212 research outputs found

    An apprenticeship learning hyper-heuristic for vehicle routing in HyFlex

    Get PDF
    Apprenticeship learning occurs via observations while an expert is in action. A hyper-heuristic is a search method or a learning mechanism that controls a set of low level heuristics or combines different heuristic components to generate heuristics for solving a given computationally hard problem. In this study, we investigate into a novel apprenticeship learning-based approach which is used to automatically generate a hyper-heuristic for vehicle routing. This approach itself can be considered as a hyper-heuristic which operates in a train and test fashion. A state-of-the-art hyper-heuristic is chosen as an expert which is the winner of a previous hyper-heuristic competition. Trained on small vehicle routing instances, the learning approach yields various classifiers, each capturing different actions that the expert hyper-heuristic performs during the search process. Those classifiers are then used to produce a hyper-heuristic which is potentially capable of generalizing the actions of the expert hyperheuristic while solving the unseen instances. The experimental results on vehicle routing using the Hyper-heuristic Flexible (HyFlex) framework shows that the apprenticeship-learning based hyper-heuristic delivers an outstanding performance when compared to the expert and some other previously proposed hyper-heuristics

    Constructing constrained-version of magic squares using selection hyper-heuristics

    Get PDF
    A square matrix of distinct numbers in which every row, column and both diagonals have the same total is referred to as a magic square. Constructing a magic square of a given order is considered a difficult computational problem, particularly when additional constraints are imposed. Hyper-heuristics are emerging high-level search methodologies that explore the space of heuristics for solving a given problem. In this study, we present a range of effective selection hyper-heuristics mixing perturbative low-level heuristics for constructing the constrained version of magic squares. The results show that selection hyper-heuristics, even the non-learning ones deliver an outstanding performance, beating the best-known heuristic solution on average

    Soft morphological filter optimization using a genetic algorithm for noise elimination

    Get PDF
    Digital image quality is of importance in almost all image processing applications. Many different approaches have been proposed for restoring the image quality depending on the nature of the degradation. One of the most common problems that cause such degradation is impulse noise. In general, well known median filters are preferred for eliminating different types of noise. Soft morphological filters are recently introduced and have been in use for many purposes. In this study, we present a Genetic Algorithm (GA) which combines different objectives as a weighted sum under a single evaluation function and generates a soft morphological filter to deal with impulse noise, after a training process with small images. The automatically generated filter performs better than the median filter and achieves comparable results to the best known filters from the literature over a set of benchmark instances that are larger than the training instances. Moreover, although the training process involves only impulse noise added images, the same evolved filter performs better than the median filter for eliminating Gaussian noise as well

    Soft morphological filter optimization using a genetic algorithm for noise elimination

    Get PDF
    Digital image quality is of importance in almost all image processing applications. Many different approaches have been proposed for restoring the image quality depending on the nature of the degradation. One of the most common problems that cause such degradation is impulse noise. In general, well known median filters are preferred for eliminating different types of noise. Soft morphological filters are recently introduced and have been in use for many purposes. In this study, we present a Genetic Algorithm (GA) which combines different objectives as a weighted sum under a single evaluation function and generates a soft morphological filter to deal with impulse noise, after a training process with small images. The automatically generated filter performs better than the median filter and achieves comparable results to the best known filters from the literature over a set of benchmark instances that are larger than the training instances. Moreover, although the training process involves only impulse noise added images, the same evolved filter performs better than the median filter for eliminating Gaussian noise as well

    Ensemble move acceptance in selection hyper-heuristics

    Get PDF
    Selection hyper-heuristics are high level search methodologies which control a set of low level heuristics while solving a given problem. Move acceptance is a crucial component of selection hyper-heuristics, deciding whether to accept or reject a new solution at each step during the search process. This study investigates group decision making strategies as ensemble methods exploiting the strengths of multiple move acceptance methods for improved performance. The empirical results indicate the success of the proposed methods across six combinatorial optimisation problems from a benchmark as well as an examination timetabling problem

    A learning automata based multiobjective hyper-heuristic

    Get PDF
    Metaheuristics, being tailored to each particular domain by experts, have been successfully applied to many computationally hard optimisation problems. However, once implemented, their application to a new problem domain or a slight change in the problem description would often require additional expert intervention. There is a growing number of studies on reusable cross-domain search methodologies, such as, selection hyper-heuristics, which are applicable to problem instances from various domains, requiring minimal expert intervention or even none. This study introduces a new learning automata based selection hyper-heuristic controlling a set of multiobjective metaheuristics. The approach operates above three well-known multiobjective evolutionary algorithms and mixes them, exploiting the strengths of each algorithm. The performance and behaviour of two variants of the proposed selection hyper-heuristic, each utilising a different initialisation scheme are investigated across a range of unconstrained multiobjective mathematical benchmark functions from two different sets and the realworld problem of vehicle crashworthiness. The empirical results illustrate the effectiveness of our approach for cross-domain search, regardless of the initialisation scheme, on those problems when compared to each individual multiobjective algorithm. Moreover, both variants perform signicantly better than some previously proposed selection hyper-heuristics for multiobjective optimisation, thus signicantly enhancing the opportunities for improved multiobjective optimisation

    Interval type-2 fuzzy sets in supplier selection

    Get PDF
    Selection of an appropriate supplier is a crucial and challenging task in the effective management of a supply chain. This study introduces a model for solving the supplier selection problem using interval type-2 fuzzy sets. Moreover, the influence of the membership function shape on the results obtained from the model has been investigated on a real-world problem instance tackled by Ordoobadi

    A multi-objective hyper-heuristic based on choice function

    Get PDF
    Hyper-heuristics are emerging methodologies that perform a search over the space of heuristics in an attempt to solve difficult computational optimization problems. We present a learning selection choice function based hyper-heuristic to solve multi-objective optimization problems. This high level approach controls and combines the strengths of three well-known multi-objective evolutionary algorithms (i.e. NSGAII, SPEA2 and MOGA), utilizing them as the low level heuristics. The performance of the proposed learning hyper-heuristic is investigated on the Walking Fish Group test suite which is a common benchmark for multi-objective optimization. Additionally, the proposed hyper-heuristic is applied to the vehicle crashworthiness design problem as a real-world multi-objective problem. The experimental results demonstrate the effectiveness of the hyper-heuristic approach when compared to the performance of each low level heuristic run on its own, as well as being compared to other approaches including an adaptive multi-method search, namely AMALGAM
    • …
    corecore